Final answer:
The polar coordinates of the point (-6, 6) are θ < 2π.
(r,θ) =(6√2, -π/4).
Step-by-step explanation:
The polar coordinates (r, θ) of a point can be determined from its Cartesian coordinates (x, y) using the following formulas:
r = √(x^2 + y^2)
θ = arctan(y/x)
Using the Cartesian coordinates (-6, 6), we can calculate the polar coordinates as follows:
r = √((-6)^2 + 6^2) = √(36 + 36) = √72 = 6√2
θ = arctan(6/-6) = arctan(-1) = -π/4
Therefore, the polar coordinates (r, θ) of the point (-6, 6) are (6√2, -π/4).