The 95% confidence interval for the mean speed is approximately
mi/h.
How did we get the value?
Given data:
![\[ n = 12 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/e3dhbll106me4fettjg4hwpez6gwxu7ueg.png)
![\[ x_i \text{'s} = 62, 61, 61, 57, 61, 54, 59, 58, 59, 69, 60, 67 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hekbmy3btazbsvo4f4rqmwywjyu4sallmh.png)
1. Calculate x-bar (sample mean):
![\[ \bar{x} = (62 + 61 + 61 + 57 + 61 + 54 + 59 + 58 + 59 + 69 + 60 + 67)/(12) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tojd55lxsjr7ludt0gjx3vsgt8uqwipoht.png)
![\[ \bar{x} = (728)/(12) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/p4rshdzqisnxxhy7tkm48kln067zgyjbzx.png)
![\[ \bar{x} \approx 60.66 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sndf0j9618fhhidtds278t1yajfjratjid.png)
2. Calculate
(sample standard deviation):
![\[ s = \sqrt{\frac{(62-\bar{x})^2 + (61-\bar{x})^2 + \ldots + (67-\bar{x})^2}{12}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lutusu3h5ztf19ta14153tgy9pyc9hqb2q.png)
![\[ s = \sqrt{((62-60.66)^2 + (61-60.66)^2 + \ldots + (67-60.66)^2)/(12)} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/i17u6x3xg9ouzn96m07hrvhy2b1jx674sm.png)
s = 12.08
3. Determine the Z-score for a 95% confidence interval (Z ≈ 1.96).
4. Calculate the margin of error:
![\[ \text{Margin of Error} = 1.96 \left( (s)/(√(n)) \right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sc3hf3ug0r17dsd9y2s6xbbo2rfypoa4k3.png)
![\[ \text{Margin of Error} = 1.96 \left( (12.08)/(√(12)) \right) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c0flsjrlvxfipe1taquh6ks84ci9o69hce.png)
The margin of error is approximately 6.83.
5. Construct the confidence interval:
![\[ \text{Confidence Interval} = \bar{x} \pm \text{Margin of Error} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/v8nso9rkou1hxzsk7ng2a33loiq2nwaae5.png)
![\[ \text{Confidence Interval} = 60.66 \pm 6.83 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fg1sbehbwl6glvljqyyxujhc0bhc7d94nm.png)
Therefore, the 95% confidence interval for the mean speed is approximately
mi/h.