Employing mathematical induction establishes that the given geometric series is equal to
for all positive integers (n), affirming the validity of the statement.
To prove the given statement by induction, we need to follow these steps:
1. Base Case: Show that the statement is true for n = 1.
2. Inductive Step: Assume that the statement is true for some arbitrary positive integer k (inductive hypothesis), and then prove that it is also true for k + 1.
Let's proceed with the proof:
Base Case (n = 1):
For n = 1, the left side of the equation is:
4/5
The right side of the equation is:
![\[ 1 - (1)/(5^1) = (5)/(5) - (1)/(5) = (4)/(5) \]](https://img.qammunity.org/2024/formulas/mathematics/college/cqo4cglnxt9zc9lcvxaeuh9pajs8939muv.png)
The left side equals the right side for n = 1, so the base case holds.
Inductive Step:
Assume that the statement is true for some arbitrary positive integer k:
![\[ 4\left((1)/(5) + (1)/(5^2) + (1)/(5^3) + \ldots + (1)/(5^k)\right) = 1 - (1)/(5^k) \]](https://img.qammunity.org/2024/formulas/mathematics/college/zci8tis4viqetw40q0eoq4rcu83y581mcv.png)
Now, we need to prove that it holds for k + 1:
![\[ 4\left((1)/(5) + (1)/(5^2) + (1)/(5^3) + \ldots + (1)/(5^k) + (1)/(5^(k+1))\right) = 1 - (1)/(5^(k+1)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/rym0ncthq7j8hwbizjygtz7x9xfjwc3eha.png)
Let's add
to both sides of the inductive hypothesis:
![\[ 4\left((1)/(5) + (1)/(5^2) + (1)/(5^3) + \ldots + (1)/(5^k) + (1)/(5^(k+1))\right) + (4)/(5^(k+1)) = 1 - (1)/(5^k) + (4)/(5^(k+1)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/5u72su0vbvp9z76iiz1s8xdxft8ie70pf1.png)
Combine the terms on the left side:
![\[ 4\left((1)/(5) + (1)/(5^2) + (1)/(5^3) + \ldots + (1)/(5^k) + (1)/(5^(k+1))\right) + (4)/(5^(k+1)) = (4)/(5) + (4)/(5^2) + (4)/(5^3) + \ldots + (4)/(5^k) + (4)/(5^(k+1)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/4x2oo0jualmws8rcg71qkpcqbf52rdz3dt.png)
Now, factor out the common factor of 4/5:
![\[ (4)/(5) \left(1 + (1)/(5) + (1)/(5^2) + \ldots + (1)/(5^k) + (1)/(5^(k+1))\right) + (4)/(5^(k+1)) = (4)/(5) \left((5)/(5) - (1)/(5^k)\right) + (4)/(5^(k+1)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/fzichbp6taguymxt76eok2a4a5rnzgf2ol.png)
Simplify the expression:
![\[ (4)/(5) \left(1 - (1)/(5^k)\right) + (4)/(5^(k+1)) = (4)/(5) - (4)/(5^(k+1)) + (4)/(5^(k+1)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/3o4tt8kesmorofuvr8bjf3557d15o0wley.png)
Combine the terms on the right side:
![\[ (4)/(5) - (4)/(5^(k+1)) + (4)/(5^(k+1)) = (4)/(5) \]](https://img.qammunity.org/2024/formulas/mathematics/college/awx4p4mk3ar0fy7ur3gthl848pcqcg1320.png)
Therefore, the statement holds for k + 1.
By induction, the statement is proven to be true for all positive integers n.