Answer:
Given, a polynomial 9x
2
−3x
2
+x−5 divided by x−
3
2
.
Then divided by x−
3
2
so x−
3
2
=0 or x=
3
2
.
Replace x by
3
2
, we get,
p(x)=9x
3
−3x
2
+x−5
p(
3
2
)=9(
3
2
)
3
−3(
3
2
)
2
+(
3
2
)−5
⟹ p(
3
2
)=9×
27
8
−3×
9
4
+
3
2
−5
⟹ p(
3
2
)=
27
72
−
9
12
+
3
2
−5
⟹ p(
3
2
)=
27
72−36+18−135
=
27
−81
=−3.
Therefore, the required remainder is −3.
Explanation: