Multiply each element of A by -2, each of B by 8. Add corresponding elements. Result:

To find (-2)A + (8)B, first, multiply each element of matrix A by (-2) and each element of matrix B by 8. Then, add the corresponding elements of the resulting matrices.
Matrix A:
![\[ A = \begin{bmatrix} -24 & -30 \\ -2 & -2 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/zu8kdur7oty4zreebet705vd3ym4rxg58a.png)
Matrix B:
![\[ B = \begin{bmatrix} -14 & -5 \\ -4 & -3 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/6cjr9zympys5xv3um9xv47bppbspo9s3b3.png)
Multiply each element of A by (-2):
![\[ (-2)A = \begin{bmatrix} 48 & 60 \\ 4 & 4 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/jrocu8blf6cd3cxi8smrxz5gm1wfdjbbgf.png)
Multiply each element of B by 8:
![\[ (8)B = \begin{bmatrix} -112 & -40 \\ -32 & -24 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/xtzv88muexay7kv4gjkktbd7q0p5u796p2.png)
Now, add the corresponding elements:
![\[ (-2)A + (8)B = \begin{bmatrix} 48 - 112 & 60 - 40 \\ 4 - 32 & 4 - 24 \end{bmatrix} = \begin{bmatrix} -64 & 20 \\ -28 & -20 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/mh9tjf76wuvdntfyns0pru81s6r3t3fusb.png)
Therefore,

Que. Given matrices A and B shown below, find
(−2)A+(8)B. A=[−24−30−2−2] and B=[−145−4−5−3] find matrix