Fill in the missing statement and reason of the proof below.
Given: start overline, A, B, end overline, \cong, start overline, C, D, end overline
AB
≅
CD
and start overline, B, C, end overline, \cong, start overline, A, D, end overline, .
BC
≅
AD
.
Prove: angle, B, A, D, \cong, angle, B, C, D∠BAD≅∠BCD.
Step Statement Reason
1
start overline, A, B, end overline, \cong, start overline, C, D, end overline
AB
≅
CD
start overline, B, C, end overline, \cong, start overline, A, D, end overline
BC
≅
AD
Given
2
start overline, A, C, end overline, \cong, start overline, A, C, end overline
AC
≅
AC
Reflexive Property
3
triangle, A, B, C, \cong, triangle, C, D, A△ABC≅△CDA
SSS
4
5
angle, B, C, A, \cong, angle, C, A, D∠BCA≅∠CAD
Corresponding Parts of Congruent Triangles are Congruent (CPCTC)
6
angle, B, A, D, \cong, angle, B, C, D∠BAD≅∠BCD
Congruent angles added to congruent angles form congruent angles
A
B
C
D