385,096 views
16 votes
16 votes
Solve using Law of exponents, Zero Exponent, and Negative Exponent​

Solve using Law of exponents, Zero Exponent, and Negative Exponent​-example-1
User Laurens Rietveld
by
2.7k points

2 Answers

21 votes
21 votes

Answer:


2 {}^( - 15) {a}^(3) b {}^(15) c {}^(6) {d}^( - 27)

Solve using Law of exponents, Zero Exponent, and Negative Exponent​-example-1
User Derek Sonderegger
by
2.9k points
14 votes
14 votes

Answer:


(a^(3) b^(15)c^(6))/(2^(15)d^(27))

Explanation:

Given expression:


\left[(2^(-3)ab^0(c^(-2)d^3)^(-2))/(2^2a^0(b^5c^(-2))^(-1)d^3) \right]^3

Following the order of operations, begin by applying exponent rules to the parentheses in the numerator and denominator.


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies \left[(2^(-3)ab^0c^((-2 \cdot -2))d^((3 \cdot -2)))/(2^2a^0b^((5 \cdot -1))c^((-2 \cdot -1))d^3) \right]^3


\implies \left[(2^(-3)ab^0c^(4)d^(-6))/(2^2a^0b^(-5)c^(2)d^3) \right]^3

Notice there are two terms with a zero exponent.


\textsf{Apply exponent rule} \quad a^0=1:


\implies \left[(2^(-3)a(1)c^(4)d^(-6))/(2^2(1)b^(-5)c^(2)d^3) \right]^3


\implies \left[(2^(-3)ac^(4)d^(-6))/(2^2b^(-5)c^(2)d^3) \right]^3

Separate the terms:


\implies \left[(2^(-3))/(2^2) \cdot (a)/(b^(-5)) \cdot (c^(4))/(c^(2)) \cdot (d^(-6))/(d^3) \right]^3


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies \left[2^((-3-2)) \cdot (a)/(b^(-5)) \cdot c^((4-2)) \cdot d^((-6-3))\right]^3


\implies \left[2^(-5) \cdot (a)/(b^(-5)) \cdot c^(2) \cdot d^(-9)\right]^3


\textsf{Apply exponent rule} \quad (1)/(a^(-n))=a^n:


\implies \left[2^(-5) \cdot a \cdot b^(5) \cdot c^(2) \cdot d^(-9)\right]^3


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 2^((-5 \cdot 3)) \cdot a^((1\cdot 3)) \cdot b^((5\cdot 3)) \cdot c^((2\cdot 3)) \cdot d^((-9\cdot 3))


\implies 2^(-15) \cdot a^(3) \cdot b^(15) \cdot c^(6) \cdot d^(-27)


\implies 2^(-15) a^(3) b^(15) c^(6) d^(-27)

To give the expression as a rational with positive exponents,


\textsf{apply exponent rule} \quad a^(-n)=(1)/(a^(n)):


\implies (1)/(2^(15)) \cdot a^(3) \cdot b^(15) \cdot c^(6) \cdot (1)/(d^(27))


\implies (a^(3) b^(15)c^(6))/(2^(15)d^(27))

Note: I have left 2¹⁵ as an exponent with base 2. As 2¹⁵ = 32768, you can substitute 2¹⁵ for 32768 in the final answer, if you so wish.

User Pavlo Kyrylenko
by
2.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.