385,095 views
16 votes
16 votes
Solve using Law of exponents, Zero Exponent, and Negative Exponent​

Solve using Law of exponents, Zero Exponent, and Negative Exponent​-example-1
User Laurens Rietveld
by
2.7k points

2 Answers

21 votes
21 votes

Answer:


2 {}^( - 15) {a}^(3) b {}^(15) c {}^(6) {d}^( - 27)

Solve using Law of exponents, Zero Exponent, and Negative Exponent​-example-1
User Derek Sonderegger
by
2.9k points
14 votes
14 votes

Answer:


(a^(3) b^(15)c^(6))/(2^(15)d^(27))

Explanation:

Given expression:


\left[(2^(-3)ab^0(c^(-2)d^3)^(-2))/(2^2a^0(b^5c^(-2))^(-1)d^3) \right]^3

Following the order of operations, begin by applying exponent rules to the parentheses in the numerator and denominator.


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies \left[(2^(-3)ab^0c^((-2 \cdot -2))d^((3 \cdot -2)))/(2^2a^0b^((5 \cdot -1))c^((-2 \cdot -1))d^3) \right]^3


\implies \left[(2^(-3)ab^0c^(4)d^(-6))/(2^2a^0b^(-5)c^(2)d^3) \right]^3

Notice there are two terms with a zero exponent.


\textsf{Apply exponent rule} \quad a^0=1:


\implies \left[(2^(-3)a(1)c^(4)d^(-6))/(2^2(1)b^(-5)c^(2)d^3) \right]^3


\implies \left[(2^(-3)ac^(4)d^(-6))/(2^2b^(-5)c^(2)d^3) \right]^3

Separate the terms:


\implies \left[(2^(-3))/(2^2) \cdot (a)/(b^(-5)) \cdot (c^(4))/(c^(2)) \cdot (d^(-6))/(d^3) \right]^3


\textsf{Apply exponent rule} \quad (a^b)/(a^c)=a^(b-c):


\implies \left[2^((-3-2)) \cdot (a)/(b^(-5)) \cdot c^((4-2)) \cdot d^((-6-3))\right]^3


\implies \left[2^(-5) \cdot (a)/(b^(-5)) \cdot c^(2) \cdot d^(-9)\right]^3


\textsf{Apply exponent rule} \quad (1)/(a^(-n))=a^n:


\implies \left[2^(-5) \cdot a \cdot b^(5) \cdot c^(2) \cdot d^(-9)\right]^3


\textsf{Apply exponent rule} \quad (a^b)^c=a^(bc):


\implies 2^((-5 \cdot 3)) \cdot a^((1\cdot 3)) \cdot b^((5\cdot 3)) \cdot c^((2\cdot 3)) \cdot d^((-9\cdot 3))


\implies 2^(-15) \cdot a^(3) \cdot b^(15) \cdot c^(6) \cdot d^(-27)


\implies 2^(-15) a^(3) b^(15) c^(6) d^(-27)

To give the expression as a rational with positive exponents,


\textsf{apply exponent rule} \quad a^(-n)=(1)/(a^(n)):


\implies (1)/(2^(15)) \cdot a^(3) \cdot b^(15) \cdot c^(6) \cdot (1)/(d^(27))


\implies (a^(3) b^(15)c^(6))/(2^(15)d^(27))

Note: I have left 2¹⁵ as an exponent with base 2. As 2¹⁵ = 32768, you can substitute 2¹⁵ for 32768 in the final answer, if you so wish.

User Pavlo Kyrylenko
by
2.5k points