160k views
3 votes
If log3. 18+log3. 3-log3. x=3​

2 Answers

10 votes

Answer:

-1.631

Explanation:

Got the answer on edge

User John Bernardsson
by
3.5k points
10 votes

Given:

The equation is


\log_318+\log_33-\log_3x=3

To find:

The solution for the given equation.

Solution:

We have,


\log_318+\log_33-\log_3x=3

Using the properties of logarithm, we get


\log_3(18* 3)-\log_3x=3
\left[\because \log(ab)=\log a+\log b\right]


\log_3(54)-\log_3x=3


\log_3\left((54)/(x)\right)=3
\left[\because \log((a)/(b))=\log a-\log b\right]


(54)/(x)=3^3
[\because \log_ab=x\Leftrightarrow b=a^x]

On further simplification, we get


(54)/(x)=27


(54)/(27)=x


2=x

Therefore, the value of x is 2.

User Rolf Carlson
by
4.9k points