204k views
19 votes
Use the Binomial Theorem to expand the binomial
(d + 5b)3

User Hasnat
by
8.4k points

1 Answer

14 votes

Answer:


\displaystyle{(d+5b)^3 = d^3 + 15bd^2 + 75b^2d + 125b^3}

Explanation:

The Binomial Theorem states that:


\displaystyle{(x+y)^n = \binom{n}{0}x^ny^0 + \binom{n}{1}x^(n-1)y^1+\binom{n}{2}x^(n-2)y^2 + \dots + \binom{n}{n}x^(n-n)y^n}

Note that:


\displaystyle{_n C _r = \binom{n}{r} = (_n P _r)/(r!) = (n!)/((n-r)!r!)}

Therefore, first, we will write the expansion:


\displaystyle{(d+5b)^3 = \binom{3}{0}d^3(5b)^0 + \binom{3}{1}d^2(5b)^1+\binom{3}{2}d^1(5b)^2 + \binom{3}{3}d^0(5b)^3}

Evaluate each terms:


\displaystyle{(d+5b)^3=(3!)/(3!0!)d^3 + (3!)/(2!1!)d^25b+(3!)/(1!2!)25b^2d + (3!)/(0!3!)125b^3}\\\\\displaystyle{(d+5b)^3 = d^3 + 15bd^2 + 75b^2d + 125b^3}

Henceforth,
\displaystyle{(d+5b)^3 = d^3 + 15bd^2 + 75b^2d + 125b^3} is the expansion.

User Danielhadar
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories