220k views
10 votes
Match each system to the correct choice.

Match each system to the correct choice.-example-1
User Ben Noland
by
4.1k points

1 Answer

5 votes

Answer:

Option A - Neither. Lines intersect but are not perpendicular. One Solution.

Option B - Lines are equivalent. Infinitely many solutions

Option C - Lines are perpendicular. Only one solution

Option D - Lines are parallel. No solution

Explanation:

The slope equation is known as;

y = mx + c

Where m is slope and c is intercept.

Now, two lines are parallel if their slopes are equal.

Looking at the options;

Option D with y = 12x + 6 and y = 12x - 7 have the same slope of 12.

Thus,the lines are parrallel, no solution.

Two lines are perpendicular if the product of their slopes is -1. Option C is the one that falls into this category because -2/5 × 5/2 = - 1. Thus, lines here are perpendicular and have one solution.

Two lines are said to intersect but not perpendicular if they have different slopes but their products are not -1.

Option A falls into this category because - 9 ≠ 3/2 and their product is not -1.

Two lines are said to be equivalent with infinitely many solutions when their slopes and y-intercept are equal.

Option B falls into this category.

User Etoxin
by
5.4k points