122k views
13 votes
Please help me thank you!

Please help me thank you!-example-1
User LeRobot
by
5.4k points

1 Answer

8 votes

Answer:

The equation of the line that passes through the points

(5,2) and (-5,6)

is

y=-2/5x+4

Explanation:

You want to find the equation for a line that passes through the two points:

(5,2) and (-5,6).

First of all, remember what the equation of a line is:

y = mx+b

Where:

m is the slope, and

b is the y-intercept

First, let's find what m is, the slope of the line...

The slope of a line is a measure of how fast the line "goes up" or "goes down". A large slope means the line goes up or down really fast (a very steep line). Small slopes means the line isn't very steep. A slope of zero means the line has no steepness at all; it is perfectly horizontal.

For lines like these, the slope is always defined as "the change in y over the change in x" or, in equation form:

So what we need now are the two points you gave that the line passes through. Let's call the first point you gave, (5,2), point #1, so the x and y numbers given will be called x1 and y1. Or, x1=5 and y1=2.

Also, let's call the second point you gave, (-5,6), point #2, so the x and y numbers here will be called x2 and y2. Or, x2=-5 and y2=6.

Now, just plug the numbers into the formula for m above, like this:

m= 6 - 2/-5 - 5 or m= 4-10 or m=-2/5

So, we have the first piece to finding the equation of this line, and we can fill it into y=mx+b like this:

y=-2/5x+b

Now, what about b, the y-intercept?

To find b, think about what your (x,y) points mean:

(5,2). When x of the line is 5, y of the line must be 2.

(-5,6). When x of the line is -5, y of the line must be 6.

Because you said the line passes through each one of these two points, right?

Now, look at our line's equation so far: y=-2/5x+b. b is what we want, the -2/5 is already set and x and y are just two "free variables" sitting there. We can plug anything we want in for x and y here, but we want the equation for the line that specfically passes through the two points (5,2) and (-5,6).

So, why not plug in for x and y from one of our (x,y) points that we know the line passes through? This will allow us to solve for b for the particular line that passes through the two points you gave!.

You can use either (x,y) point you want..the answer will be the same:

(5,2). y=mx+b or 2=-2/5 × 5+b, or solving for b: b=2-(-2/5)(5). b=4.

(-5,6). y=mx+b or 6=-2/5 × -5+b, or solving for b: b=6-(-2/5)(-5). b=4.

User Didier Trosset
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.