172k views
3 votes
Solve the triangle. Round all answers to two decimal places. 12 17 B 10 a b sin (A) = sin(B) = sin(C) a² = 6² + c² - 2bc cos(A)​

Solve the triangle. Round all answers to two decimal places. 12 17 B 10 a b sin (A-example-1
User Naltroc
by
8.2k points

1 Answer

6 votes

Answer:

To solve the triangle using the given information:

Given:

Side a = 10

Side b = 12

Side c = 17

We're asked to find angle A and side b.

We'll use the Law of Cosines to find angle A first:


\[a^2 = b^2 + c^2 - 2bc \cdot \cos(A)\]

Substitute the given values:


\[10^2 = 12^2 + 17^2 - 2 * 12 * 17 \cdot \cos(A)\]\[100 = 144 + 289 - 408 \cdot \cos(A)\]\[100 = 433 - 408 \cdot \cos(A)\]

Solving for \(\cos(A)\):


\[-333 = -408 \cdot \cos(A)\]\[\cos(A) = (-333)/(-408)\]\[\cos(A) \approx 0.81618\]

Now, to find angle A, take the arccosine of 0.81618:


\(A = \arccos(0.81618)\)\(A \approx 36.87^\circ\)

Now that we have angle A, let's use the Law of Sines to find angle B:


\[(\sin(A))/(a) = (\sin(B))/(b)\]\[(\sin(36.87^\circ))/(10) = (\sin(B))/(12)\]

Solving for
\(\sin(B)\):


\[\sin(B) = (12 * \sin(36.87^\circ))/(10)\]\[\sin(B) \approx 0.7017\]

Now, find angle B:


\(B = \arcsin(0.7017)\)\(B \approx 44.07^\circ\)

Therefore, in the triangle:

Angle A ≈ 36.87°

Angle B ≈ 44.07°

Explanation:

User Bofanda
by
7.8k points