107k views
3 votes
If the length of a rectangle is 8 more than its breadth and its perimeter is 40m, find its length and breadth. Also, find its area.

a. Length = 16m, Breadth = 8m, Area = 128m²
b. Length = 12m, Breadth = 4m, Area = 48m²
c. Length = 14m, Breadth = 6m, Area = 84m²
d. Length = 10m, Breadth = 2m, Area = 20m²

User Riddik
by
7.7k points

2 Answers

5 votes

Answer:

c

Step-by-step explanation:

Breadth = B

Length = L

L = 8 + B

2L + 2B = 40

2B + 16 + 2B = 40

B = 6

L = 14

B*L = 6 * 14 = 84

User Shangsunset
by
7.9k points
1 vote

Final answer:

By using the perimeter formula for a rectangle and substituting the given values, we can determine that the breadth of the rectangle is 6m and the length is 14m, resulting in an area of 84m². The correct answer is C.

Step-by-step explanation:

To solve the problem of finding the length and breadth of a rectangle where the length is 8 more than its breadth and its perimeter is 40m, we use two key equations. The perimeter (P) of a rectangle is given by P = 2(length + breadth), and in this case, we're told the perimeter is 40m. If breadth = b, then the length is length = b + 8.

First, plug in these expressions into the perimeter equation:

  • 2(b + (b + 8)) = 40
  • 2(2b + 8) = 40
  • 4b + 16 = 40
  • 4b = 24
  • b = 6m

So the breadth is 6m, and the length is 6m + 8m = 14m.

To find the area, we use the equation Area = length * breadth. Thus:

  • Area = 14m * 6m
  • Area = 84m²

The correct answer is: Length = 14m, Breadth = 6m, Area = 84m², which corresponds to option c.

User Waltersu
by
8.0k points