The ratio of the masses and radii of two planets are 2:3 and 8:27. The ratio of respective escape speeds from their surfaces is 4:9
The escape speed from the surface of a planet is given by the formula:
![\[v_{\text{escape}} = \sqrt{(2GM)/(R)}\]](https://img.qammunity.org/2024/formulas/physics/high-school/ecnbmec9yawjhune3uhvs5h534fotog999.png)
where:
is the escape speed,
is the gravitational constant,
is the mass of the planet, and
is the radius of the planet.
Let's consider two planets, planet 1 and planet 2, with masses
and
and radii
and
, respectively. The given ratios are:
![\[(M_1)/(M_2) = (2)/(3)\]](https://img.qammunity.org/2024/formulas/physics/high-school/bu5aa66j8le7bjnokcrsi0e6f3a0i2qz1e.png)
![\[(R_1)/(R_2) = (8)/(27)\]](https://img.qammunity.org/2024/formulas/physics/high-school/edye5o4ovip0tlgrrscab7tdt9wrrkxy4w.png)
Now, let's find the ratio of their escape speeds,

![\[\frac{v_{\text{escape1}}}{v_{\text{escape2}}} = \sqrt{((2G M_1)/(R_1))/((2G M_2)/(R_2))} = \sqrt{(M_1 R_2)/(M_2 R_1)}\]](https://img.qammunity.org/2024/formulas/physics/high-school/kw5jcf5big3r61jpc48nmi9rhyv2d4mkzf.png)
Substitute the given ratios:
![\[\frac{v_{\text{escape1}}}{v_{\text{escape2}}} = \sqrt{((2G \cdot (2)/(3) M_2)/((8)/(27) R_1))/((2G M_2)/(R_2))} = \sqrt{((2)/(3) \cdot (27)/(8) \cdot R_2)/(R_1)} = \sqrt{(9)/(4) \cdot (R_2)/(R_1)}\]](https://img.qammunity.org/2024/formulas/physics/high-school/6upsib4eakfc8ad81a237lpxrf1ura0mtu.png)
Simplify:
![\[\frac{v_{\text{escape1}}}{v_{\text{escape2}}} = (3)/(2) \cdot \sqrt{(R_2)/(R_1)}\]](https://img.qammunity.org/2024/formulas/physics/high-school/r9f15jsmie4fpmlhue323wij9cyhzvtv9o.png)
Now, substitute the given ratio

![\[\frac{v_{\text{escape1}}}{v_{\text{escape2}}} = (3)/(2) \cdot \sqrt{(1)/((8)/(27))} = (3)/(2) \cdot \sqrt{(27)/(8)} = (3)/(2) \cdot (3)/(2) = (9)/(4)\]](https://img.qammunity.org/2024/formulas/physics/high-school/3vuilngp8ubu46g2pid8afnghgqp90hio5.png)
So, the correct answer is:
b. 4:9