Answer:
16984
Explanation:
Given
---- Initial
--- rate
Required
Determine the population after 6 years
To do this, we make use of the following exponential function
![f(x) = a(r+1)^x](https://img.qammunity.org/2022/formulas/mathematics/college/jdpi8qgg7z17fme4pvh4vp93dxqx68lmhs.png)
Substitute values for a and r
![f(x) = 16000(1\%+1)^x](https://img.qammunity.org/2022/formulas/mathematics/college/g3ypnid3vm34fld99t0vx7i53zv0zo7zc9.png)
Express 1% and decimal
![f(x) = 16000(0.01+1)^x](https://img.qammunity.org/2022/formulas/mathematics/college/bnx6bx8mapc3t7rqy7628qj5pxykvmv33v.png)
![f(x) = 16000(1.01)^x](https://img.qammunity.org/2022/formulas/mathematics/college/zz8qwzy0tff0pcao1nkiwevfibnl91mmxz.png)
The population after 6 years is:
Substitute 6 for years
![f(6) = 16000(1.01)^6](https://img.qammunity.org/2022/formulas/mathematics/college/id2h3vjbi6en8a3byw3wlbhqhxe4w4ba3a.png)
![f(6) = 16984.3224096](https://img.qammunity.org/2022/formulas/mathematics/college/xzm5587qu86vfn5x8n7npf4rzvg06d2n3c.png)
-- approximated