Answer:
sinx -
cosx
Explanation:
using the sum identity for cosine
cos(a + b) = cosacosb - sinasinb
then
cos(x +
)
= cosxcos(
) - sinxsin(
)
[
is an angle in the third quadrant where sin and cosine < 0 ]
[ the related acute angle to
=
- π =
]
= cosx × - cos(
) - sinx × - sin(
)
= cosx × -
- sinx × -
= -
cosx +
sinx
=
sinx -
cosx