The value of
.
To find
, the derivative of
at x = 1, we can use the quotient rule. The quotient rule states that if

In this case,
. Let's find
and then evaluate it at x = 1:
![\[ h'(x) = ((f'(x)g(x) + f(x)g'(x))(f(x) - g(x)) - (f(x)g(x))(f'(x) - g'(x)))/((f(x) - g(x))^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/5qyuucdv5tv8obzqkpmamq7x5agf3i6490.png)
Now, plug in the given values and simplify:
![\[ h'(1) = ((-6 \cdot (-4) + 4 \cdot 2)(4 - (-4)) - (4 \cdot (-4))( -6 - 2))/((4 - (-4))^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/bjuiix3t3zd6skbpdvh2veu0h3axym5bpo.png)
![\[ h'(1) = ((24 + 8)(8) - (-16)(-8))/((8)^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/pdpbahx5xsuzd7lufczq33ud4xp3c7984d.png)
![\[ h'(1) = (32 \cdot 8 + 128)/(64) \]](https://img.qammunity.org/2024/formulas/mathematics/college/243gg5cjcg3zkz7j7qhpibc1xchvu80gb9.png)
![\[ h'(1) = (256 + 128)/(64) \]](https://img.qammunity.org/2024/formulas/mathematics/college/2myytolwnre867q1ahpj2s7sy6bx96rmh6.png)
![\[ h'(1) = (384)/(64) \]](https://img.qammunity.org/2024/formulas/mathematics/college/4eqhykax2jh8g74xzbfr749j9qsfaywgys.png)
![\[ h'(1) = 6 \]](https://img.qammunity.org/2024/formulas/mathematics/college/maw48o9816sn2tbkyimeoe14btcxd0q3cf.png)
Therefore,
.
Complete question:
Suppose that f and g are function that are differentiable at x = 1 and that f(1) = 4, f'(1) = -6, g(1) = -4, and g'(1) = 2. Find h'(1). h(x) = f(x)g(x)/f(x) - g(x) h'(1) = 1