106k views
1 vote
Write a linear function f with f(0) equals 2 and f(2) equals 4.

a. f(x) equals 2x
b. f(x) equals 2x plus 2
c. f(x) equals x plus 2
d. f(x) equals x

1 Answer

5 votes

Final answer:

To find the linear function that goes through the points (0, 2) and (2, 4), calculate the slope which is 1, and use the y-intercept which is 2. The correct linear function is f(x) = x + 2, which is option c.

Step-by-step explanation:

To write a linear function f with f(0) = 2 and f(2) = 4, we need to determine the slope and y-intercept for the line. The slope, m, is the change in y divided by the change in x.

Here, the slope is (4 - 2) / (2 - 0) = 2 / 2 = 1. The y-intercept, b, is the value of f(x) when x is 0, which is given as 2. Thus, the equation of the line is f(x) = x + 2.

The correct option is c. f(x) = x + 2 because it satisfies both given points: f(0) = 2 and f(2) = 4.

User Conrad Frix
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories