The first 10 partial sums of the series are approximately:
A) 0.125
B) 0.291
C) 0.422
D) 0.547
E) 0.667
F) 0.782
G) 0.893
H) 1.000
I) 1.104
To find the first 10 partial sums of the series
, we can manually calculate the sum for each value of (n) from 2 to 11. The formula for the nth partial sum
of a series is given by:
![[S_n = \sum_(i=2)^(n) (1)/(i(i^2))]](https://img.qammunity.org/2024/formulas/mathematics/high-school/cinu00ztydp97syy3eo03lmwe44fukt9g8.png)
Using this formula, we can calculate the first 10 partial sums as follows:
![[S_2 = (1)/(2(2^2)) = (1)/(8) \approx 0.125]](https://img.qammunity.org/2024/formulas/mathematics/high-school/czvrpe0mvpljccgjn74zezrmvmadk2h56d.png)
![[S_3 = S_2 + (1)/(3(3^2)) = (1)/(8) + (1)/(27) \approx 0.291]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2mtgrbrs7wdgjoiw18q6ognd538idy0bhb.png)
![[S_4 = S_3 + (1)/(4(4^2)) = (1)/(8) + (1)/(27) + (1)/(64) \approx 0.422]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fcw8vgtuq0rigxdk8rw4omx9lfnuf48j51.png)
![[S_5 = S_4 + (1)/(5(5^2)) = (1)/(8) + (1)/(27) + (1)/(64) + (1)/(125) \approx 0.547]](https://img.qammunity.org/2024/formulas/mathematics/high-school/e2t6d5zta8cr0pqwj3dpd0foki2trbq25j.png)
![[S_6 = S_5 + (1)/(6(6^2)) = (1)/(8) + (1)/(27) + (1)/(64) + (1)/(125) + (1)/(216) \approx 0.667]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bmp8g01gkn5gl8rv9dy00947zi5wep5j43.png)
![[S_7 = S_6 + (1)/(7(7^2)) = (1)/(8) + (1)/(27) + (1)/(64) + (1)/(125) + (1)/(216) + (1)/(343) \approx 0.782]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kdezgh3vy2cz23sr76g0xjt3otmvqtz2po.png)
![[S_8 = S_7 + (1)/(8(8^2)) = (1)/(8) + (1)/(27) + (1)/(64) + (1)/(125) + (1)/(216) + (1)/(343) + (1)/(512) \approx 0.893]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rgx1di7sy7z6ndjk64fvlbdua3e7xjsvga.png)
![[S_9 = S_8 + (1)/(9(9^2)) = (1)/(8) + (1)/(27) + (1)/(64) + (1)/(125) + (1)/(216) + (1)/(343) + (1)/(512) + (1)/(729) \approx 1.000]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dboklelfgqk4fye6nwyxi3iftfwvgj50h7.png)
![[S_(10) = S_9 + (1)/(10(10^2)) = (1)/(8) + (1)/(27) + (1)/(64) + (1)/(125) + (1)/(216) + (1)/(343) + (1)/(512) + (1)/(729) + (1)/(1000) \approx 1.104]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lxjtwxhea07i22ew8iwsrtweztbza9nthd.png)
Therefore, the first 10 partial sums of the series are approximately:
A) 0.125
B) 0.291
C) 0.422
D) 0.547
E) 0.667
F) 0.782
G) 0.893
H) 1.000
I) 1.104