293,316 views
25 votes
25 votes
If
y = { \sin}^( - 1)x then prove that
( {1 - x) }^(2) \frac{ {d}^(2) y}{d {x}^(2) } - x (dy)/(dx) = 0



User Dimas Longo
by
2.4k points

1 Answer

11 votes
11 votes


{ \green{ \boxed{ \purple{ \sf{(1 - {x}^(2)) \frac{ {d}^(2)y }{d {x}^(2) } - x (dy)/(dx) = 0}}}}}

Explanation:

Given,


{ \blue{ \sf{y = { \sin}^( - 1)x}}}

differentiate with respect to x


{ \purple{ \sf{ (dy)/(dx) = \frac{1}{ \sqrt{1 - {x}^(2) } } }}}


{ \purple{ \sf{ \sqrt{1 - {x}^(2) } (dy)/(dx) = 1}}} \: { \to} \: { \tt{ {eq}^(n) (1)}}

This is in the form of uv method

uv = uv' + vu' = 0


{ \tt{ \sqrt{1 - {x}^(2) } = u}}


{ \tt{ (dy)/(dx) = v}}

u' = differentiation of u

v' = differentiation of v

Apply uv method to Eqⁿ (1) then,


{ \purple{ \sf{ \sqrt{1 - {x}^(2) } = \frac{ {d}^(2) y}{d {x}^(2) } + (dy)/(dx) \frac{1}{ \cancel2 \sqrt{1 - {x}^(2) } } (0 { \cancel{- 2}}x) = 0}}}

Multiply by
{ \red{ \sf{ \sqrt{1 - {x}^(2)}}}} then,


{ \boxed{ \purple{ \sf{(1 - {x}^(2)) \frac{ {d}^(2)y }{d {x}^(2) } - x (dy)/(dx) = 0}}}}

User El Mac
by
2.5k points