The exponential function's decay rate, calculated as the percentage decrease per unit time, is 50.00%. None of the provided options precisely matches this value. Option C is the correct choice.
Certainly, here's a step-by-step calculation of the decay rate:
1. Define the Exponential Function:
![\[ f(x) = 0.535e^(-0.07x) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2sgpr0ndw6aaxq3sedvssyqgfweahy44aa.png)
2. Calculate the Initial Value:
![\[ y_0 = f(0) = 0.535 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wsu19gxetdr72u7ip6v1ky6d3u6oawkyah.png)
3. **Calculate the Time to Decay to Half:
![\[ t_{\text{half}} = (\log(0.5))/(-0.07) \approx 9.9021 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hjgtbxfnmmpfw9apsybe45cpop4ahd49d1.png)
4. Calculate the Decay Rate per Unit Time:
![\[ \text{decay\_rate} = 1 - \frac{f(t_{\text{half}})}{y_0} = 0.5000 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/oqduwyawl2efj6amnrg08pr856k97fwhbd.png)
5. Convert the Decay Rate to Percentage:
![\[ \text{decay\_rate\_percent} = \text{decay\_rate} * 100 = 50.00\% \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tsxot8ubh4u5xqaq3il8ctliedwgaryfx2.png)
Therefore, the decay rate of the function is 50.00% per unit time. Option C is the correct choice.