204k views
1 vote
Simplify the expression. Assume
a) (3a)/2
b) (2a)/3
c) a/2
d) a/3

User Yahh
by
8.4k points

1 Answer

6 votes

Final answer:

Simplifying algebraic expressions involves reducing fractions by dividing both sides by common factors, using logical reasoning analogous to knowing that one half of one half is one quarter, and that a fraction like three thirds simplifies to one.

Step-by-step explanation:

The task is to simplify the expression. The expression given in the question can be interpreted in different parts as (a) ⅓a, (b) ⅔a, (c) ½ a, and (d) ⅓ a. To simplify these expressions, we can use the basic principles of fractions and eliminate terms wherever possible to reduce the expression to its simplest form.

For instance, let's simplify ⅔a (part b). Since one half of one-half is one quarter, and knowing that one half multiplied by two must be one, or that three thirds must be a whole 'one', we can apply this logical reasoning to simplify expressions. In the context of algebraic expressions, this involves dividing both sides by a common factor to reduce the fraction.

User Patrick Ohly
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories