The margin of error is 18.8. (rounded to one decimal place).
To find the margin of error (M.E.) for a sample of size 9 with a mean of 79.5 and a standard deviation of 16.8 at a confidence level of 99.5%, we can use the formula:
![[M.E. = t_{\text{critical}} * \frac{\text{standard deviation}}{\sqrt{\text{sample size}}}]](https://img.qammunity.org/2024/formulas/mathematics/college/50t2ifqk5ttaws1e27pcpac6udeu2ojvq4.png)
First, we need to find the critical t-value for a 99.5% confidence level with 8 degrees of freedom (sample size - 1). Using a t-distribution table or a calculator, the critical t-value is approximately 3.355.
Now, we can calculate the margin of error:
![[M.E. = 3.355 * (16.8)/(√(9))]](https://img.qammunity.org/2024/formulas/mathematics/college/mj0euyrqf4k8ofv354rht1ygm5hsslmlzq.png)
![[M.E. = 3.355 * (16.8)/(3)]](https://img.qammunity.org/2024/formulas/mathematics/college/kajiut5pyij3b2c8jw2xu6h5vmyr733bn9.png)
![[M.E. = 3.355 * 5.6]](https://img.qammunity.org/2024/formulas/mathematics/college/ht5c36rsrny7puqf6u79z30pftmyvg7bro.png)
![[M.E. \approx 18.788]](https://img.qammunity.org/2024/formulas/mathematics/college/o6jfugh05oaoltoz1807oylzzr3tify0zt.png)
Rounding to one decimal place, the margin of error is approximately 18.8.