54.7k views
4 votes
The acetone(1) chloroform(2) system has an azeotrope at x₁ 0.38, 248 mmHg, and 35.17°C. Fit the Wilson equation and predict the p-x-y diagram.

a) Raoult's law
b) Antoine equation
c) Van der Waals equation
d) Modified Raoult's law

1 Answer

4 votes

Final answer:

The molar entropy of vaporization of acetone at its boiling point can be calculated using the enthalpy of vaporization divided by the boiling temperature in Kelvin.

Step-by-step explanation:

Calculating the Molar Entropy of Vaporization

The question asks for the molar entropy of vaporization of acetone under 1 atm of pressure. To calculate this, we use the thermodynamic relation:

\(\Delta S_{vap} = \frac{\Delta H_{vap}}{T_{boil}}\)

Where \(\Delta S_{vap}\) is the molar entropy of vaporization, \(\Delta H_{vap}\) is the molar enthalpy of vaporization, and \(T_{boil}\) is the boiling temperature in Kelvin. For acetone, we have \(\Delta H_{vap} = 29.1\ kJ/mol\) and the boiling temperature \(T_{boil} = 56 + 273.15 = 329.15\ K\). Thus, the calculation will be:

\(\Delta S_{vap} = \frac{29.1\times 10^3}{329.15}\)

This will give us the molar entropy of vaporization of acetone in \(J/K\cdot mol\).

User Sir Conquer
by
7.9k points