Applying De Morgan's Laws, ~A /\ B transforms to ¬A∧B, reflecting the logical equivalence.
To express ~A /\ B using De Morgan's Laws, we utilize the provided laws:
1. ¬(A∧B)≡¬A∨¬B
2. ¬(¬P)≡P
Starting with ~A /\ B, we apply the first law:
¬( A∧B)≡¬( A)∨¬B
Using the second law to simplify ¬( A):
A∨¬B
In symbolic form:
¬(A∧B)≡A∨¬B
Now, let's express ~A /\ B using De Morgan's Laws:
¬( A∧B)≡¬(A∨¬B)
Applying the laws in reverse order:
¬A∧B
Therefore, by De Morgan's Laws, ~A /\ B is logically equivalent to ¬A∧B.