Answer:
P = a(61a - 36b + 50c) + 10b² + 89c² - 16bc
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Algebra I
- Terms/Coefficients
- Expand by FOIL (First Outside Inside Last)
- Factoring
Geometry
Perimeter Formula [Triangle]: P = L₁ + L₂ + L₃
- L₁ is one side
- L₂ is another side
- L₃ is the 3rd side
Explanation:
Step 1: Define
L₁ = (6a - 3b)(6a - 3b)
L₂ = (5a + 5c)(5a + 5c)
L₃ = (8c - b)(8c - b)
Step 2: Find Perimeter
- Substitute in variables [Perimeter - Triangle]: P = (6a - 3b)² + (5a + 5c)² + (8c - b)²
- Expand [FOIL]: P = (36a² - 36ab + 9b²) + (25a² + 50ac + 25c²) + (b² - 16bc + 64c²)
- Combine like terms (a²): P = 61a² - 36ab + 9b² + 50ac + 25c² + b² - 16bc + 64c²
- Combine like terms (b²): P = 61a² + 10b² - 36ab + 50ac + 25c² - 16bc + 64c²
- Combine like terms (c²): P = 61a² + 10b² + 89c² - 36ab + 50ac - 16bc
- Rearrange variables: P = 61a² - 36ab + 50ac + 10b² + 89c² - 16bc
- Factor: P = a(61a - 36b + 50c) + 10b² + 89c² - 16bc