The solutions for x in the equation
are x = 1 or
.
Let's consider the given equation in its entirety:
![\[ \frac{{(x-1)}}{3} \cdot \frac{{(2x+1)}}{5} = \frac{{(3x-1)}}{4} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/v605k1wxjtme9dmtlni562d8t5eul0a9o9.png)
To solve this equation, follow these steps:
1. Clear Fractions:
Multiply both sides by the least common denominator, which is 60 (the product of 3, 5, and 4):
![\[ 60 \cdot \frac{{(x-1)}}{3} \cdot \frac{{(2x+1)}}{5} = 60 \cdot \frac{{(3x-1)}}{4} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/h3tvdlt6bwbjcokedznnkuk4krr6v8bt85.png)
This simplifies to:
![\[ 20(x-1)(2x+1) = 15(3x-1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/w4njzdk855uk3funbo6nau17vz5pfuucpx.png)
2. Expand:
Expand both sides of the equation:
![\[ 40x^2 - 20x - 40 = 45x - 15 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gce3tp6pcl1be09eqmec1bc4wxs4cfy4ty.png)
3. Collect Terms:
Move all terms to one side of the equation:
![\[ 40x^2 - 65x + 25 = 0 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/13nxdtuqjf2jbi94zsuf5qv3by9mdt1mif.png)
4. Factor or Use Quadratic Formula:
To find the values of x in the equation
, we can use the quadratic formula:
![\[ x = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{2a} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xhs8bzwtextky79czcri6qk0ptaqrc296v.png)
![\[ x = \frac{{65 \pm \sqrt{{4225 - 4000}}}}{80} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3kfmo7sx2vpjf4rkt8zzj5ep0c1zp26e43.png)
![\[ x = \frac{{65 \pm \sqrt{{225}}}}{80} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vriu5ndajlrt9wag1lxwset036tbueptf9.png)
![\[ x = \frac{{65 \pm 15}}{80} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/zfv34urjk08aojuhtrzbkfpvz1g4go2k86.png)
So, the solutions for x are:
![\[ x = (8)/(8) \quad \text{or} \quad x = (5)/(8) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/almt0r05xq7j00qfycd2heu7pprgq1nql5.png)
Therefore, x can be either 1 or
.
Que. ((x-1)/3) ((2x 1)/5)=((3x-1)/4) Find x?