The expression is equal to -15.
1. Given expression:
.
2. Simplifying the expression involves canceling out common factors:
![\[ ((c \cdot (c - 46 \cdot 15c^2)))/((c \cdot 4) / (12 \cdot 30c)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/l3hiw19a1xgckgndl776odeuuyrow5cmcx.png)
3. Further simplifying:
![\[ ((c \cdot (c - 690c^2)))/((4) / (360c)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1wnau067ne9ks4cwitommofr3m1qqh7etk.png)
4. Simplifying the numerator and denominator:
![\[ (c^2 - 690c^3)/(90c) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/37d739pw8i5q6psazr7hqouzx3ttg8y4ok.png)
5. Factoring out common factor c from the numerator:
![\[ (c \cdot (c - 690c^2))/(90c) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qqwtejouoevlcwa0236bruvzfhy4fyy5hb.png)
6. Canceling out common factors:
![\[ (c - 690c^2)/(90) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pj7phcpsxurroldeupvcm6lthd8zostf0d.png)
7. Factoring out common factor c from the numerator:
![\[ (c \cdot (1 - 690c))/(90) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/3nky7l6szkt7hnmnpfhnlq126xphjdjzph.png)
8. Simplifying further:
![\[ (-690c^2 + c)/(90) = (c(1 - 690c))/(90) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pq12w6xcf9mb0h74ifj61fjc5qugx5bs8z.png)
9. Simplifying:
![\[ (-690c^2 + c)/(90) = -(690c^2 - c)/(90) = -(c(690c^2 - 1))/(90) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/894gamagnm4s03tuyo4iel03t77k31gret.png)
10. Further simplifying, we get:
![\[ -(c(690c^2 - 1))/(90) = -(c(26c + 1)(26c - 1))/(90) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hl27rqesuyoyo3ykso6e59m3g1tc3tm4ux.png)
11. Canceling out common factors:
![\[ -((26c + 1)(26c - 1))/(90) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/h7x8u8lgy6hy3mgsfua8frc38uplhxqa42.png)
12. This is equivalent to -15.
Therefore, the correct answer is (c) -15.