74.3k views
1 vote
Evaluate the integral: ∫₂⁸ dx / (x² - 1)^(3/2).

User Adam Sibik
by
8.5k points

1 Answer

4 votes

Final answer:

To evaluate the integral, we can use a trigonometric substitution. Substitute x = sec(u), simplify the integrand, and apply a u-substitution to find the final result.

Step-by-step explanation:

To evaluate the integral ∫₂⁸ dx / (x² - 1)^(3/2), we can use a trigonometric substitution. Let's substitute x = sec(u), which implies dx = sec(u)tan(u) du. Making this substitution, the integral becomes:

∫ ₂⁸ sec(u)tan(u) du / (sec²(u) - 1)^(3/2). Simplifying further:

∫ ₂⁸ sec(u)tan(u) du / tan²(u)^(3/2). Canceling the tan(u) terms, we get:

∫ ₂⁸ sec(u) du / tan(u).

Using the trigonometric identity sec²(u) - 1 = tan²(u), we can rewrite the integral as:

∫ ₂⁸ sec(u) du / √(sec²(u) - 1).

This integral can be evaluated using a simple u-substitution. After integrating, substitute u back in terms of x to get the final result.

User Surendher
by
7.2k points

No related questions found