The volume of generated by the curves and the y-axis is 0.56π unit³.
How to determine the volume generated by curves.
Given
x = 2y² and x = y + 1
Let's find the point of intersection by equating the two functions.
2y² = y + 1
2y² - y - 1 = 0
Solve the quadratic equation
Using quadratic formula
y = (-b +- √b² - 4ac)/2a
a = 2, b = -1 and c = -1
y = -(-1) +- √2² - 4(2)(-1)/2(2)
y = (1 +- √4 + 8)/4
y = (1 +- √12)/4
y = (1 + - 2√3)/4
y = 1 +- 3.5/4
= 1 + 3.5/4 or 1 - 3.5/4
= 1.11 or -0.625
To set up the integral using the shell method
\V = 2π∫]a to b{f(x) - g(x)}dy
Given x = 2y² and x = y + 1
where y ranges from -0.625 to 1.11 the integral becomes:
V = 2π∫₋₀.₆₂₅¹*¹¹(2y² - (y + 1))ydy
V = 2π∫₋₀.₆₂₅¹*¹¹(2y³ - y² - y)dy
V = 2π[y⁴/2 - y³/3 - y²/2]₋₀·₆₂₅¹*¹¹
= 2π[(1.11⁴/2 - 1.11³/3 - 1.11²/2) - (-0.625⁴/2 - (-0.625)³/3 - (-0.625)²/2]
V = 2π(0.76 - 0.46 - 0.62) -(0.08 + 0.08 -0.20)
V = 2π * 0.28
V = 0.56π unit³
The volume of generated by the curves and the y-axis is 0.56π unit³.