227k views
4 votes
Integrate by parts logx.dx​

Integrate by parts logx.dx​-example-1

1 Answer

11 votes

Answer:


\displaystyle \int {\log x} \, dx = x \bigg( \log x - (1)/(\ln(10)) \bigg) + C

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration by Parts:
\displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define

Identify


\displaystyle \int {\log x} \, dx

Step 2: Integrate Pt. 1

Identify variables for integration by parts using LIPET.

  1. Set u:
    \displaystyle u = \log x
  2. [u] Logarithmic Differentiation:
    \displaystyle du = (1)/(x \ln(10)) \ dx
  3. Set dv:
    \displaystyle dv = dx
  4. [dv] Integration Rule [Reverse Power Rule]:
    \displaystyle v = x

Step 3: integrate Pt. 2

  1. [Integral] Integration by Parts:
    \displaystyle \int {\log x} \, dx = x \log x - \int {(1)/(\ln(10))} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {\log x} \, dx = x \log x - (1)/(\ln(10)) \int {} \, dx
  3. [Integral] Integration Rule [Reverse Power Rule]:
    \displaystyle \int {\log x} \, dx = x \log x - (1)/(\ln(10))x + C
  4. Factor:
    \displaystyle \int {\log x} \, dx = x \bigg( \log x - (1)/(\ln(10)) \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Ishaan Garg
by
5.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.