The 95% confidence interval for the proportion p of panels without visible feet is approximately 0.509 to 0.707.
To calculate a confidence interval for the proportion p of panels without visible feet, you can use the formula for the confidence interval for a population proportion:
![\[ \text{Confidence Interval} = \hat{p} \pm Z * \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sn6a22i6ihdhky1khpnjrid2dcpg69py8p.png)
where:
-
is the sample proportion,
- Z is the Z-score corresponding to the desired confidence level,
- n is the sample size.
Given:
-

- n = 75,
- For a 95% confidence interval, the Z-score is approximately 1.96.
Now, plug these values into the formula:
![\[ \text{Confidence Interval} = (56)/(75) \pm 1.96 * \sqrt{((56)/(75) * (19)/(75))/(75)} \]](https://img.qammunity.org/2024/formulas/mathematics/college/ptosn3zef3p4a0ofcdhrwpgbtz0lip6euu.png)
Calculate the values:
![\[ \text{Confidence Interval} = (56)/(75) \pm 1.96 * \sqrt{(56 * 19)/(75^3)} \]](https://img.qammunity.org/2024/formulas/mathematics/college/inbs42lrr6wxys3cew2r7jfsoz5du82jpn.png)
![\[ \text{Confidence Interval} = (56)/(75) \pm 1.96 * \sqrt{(1064)/(421875)} \]](https://img.qammunity.org/2024/formulas/mathematics/college/10citngttrb9dzxijghsiact7dmyl3d9j2.png)
![\[ \text{Confidence Interval} = (56)/(75) \pm 1.96 * (√(1064))/(687.5) \]](https://img.qammunity.org/2024/formulas/mathematics/college/m617g3b9msqe5f8m14xmjbt0s6mzx89tuc.png)
![\[ \text{Confidence Interval} \approx (56)/(75) \pm 0.148 \]](https://img.qammunity.org/2024/formulas/mathematics/college/hs5pxj73h98vfceoxy0fbd9y7dzo3gwkxs.png)
Now, compute the interval:
![\[ \text{Lower bound} \approx (56)/(75) - 0.148 \]](https://img.qammunity.org/2024/formulas/mathematics/college/le9lu8vgrebvds5daz5oa28qh4p5qbfivm.png)
![\[ \text{Upper bound} \approx (56)/(75) + 0.148 \]](https://img.qammunity.org/2024/formulas/mathematics/college/yy2zzljulolrkv8lsvuph1lag5a0g8jn1z.png)
So, the 95% confidence interval for the proportion p of panels without visible feet is approximately 0.509 to 0.707.