82.0k views
20 votes
Prove that √sec²

User Vedda
by
3.9k points

1 Answer

3 votes

Given:

Consider the given statement is


\sqrt{\sec^2\theta+\text{cosec}^2\theta}=\tan \theta+\cot \theta

To prove:

The given statement.

Solution:

We have,


\sqrt{\sec^2\theta+\text{cosec}^2\theta}=\tan \theta+\cot \theta

Taking LHS, we get


LHS=\sqrt{\sec^2\theta+\text{cosec}^2\theta}


LHS=\sqrt{(1)/(\cos^2\theta)+(1)/(\sin^2\theta)}


LHS=\sqrt{(\sin^2\theta+\cos^2\theta)/(\sin^2\theta\cos^2\theta)}


LHS=\sqrt{(1)/(\sin^2\theta\cos^2\theta)}
[\because \sin^2\theta+\cos^2\theta=1]


LHS=(1)/(\sin\theta\cos\theta)


LHS=(\sin^2\theta+\cos^2\theta)/(\sin\theta\cos\theta)
[\because \sin^2\theta+\cos^2\theta=1]


LHS=(\sin^2\theta)/(\sin\theta\cos\theta)+(\cos^2\theta)/(\sin\theta\cos\theta)


LHS=(\sin\theta)/(\cos\theta)+(\cos\theta)/(\sin\theta)


LHS=\tan \theta+\cot \theta


LHS=RHS

Hence proved.

User Kartik Anand
by
4.6k points