Answer:
![\displaystyle y' = (24x - 5)/(2√(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/eriifylvun01x61nql3ne7u9yukfppe2ln.png)
General Formulas and Concepts:
Algebra I
- Exponentials [Fractions] - Are radicals
- Exponential Rule [Rewrite]:
Calculus
Derivatives
Derivative Notation
Derivative of a constant is 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Product Rule:
![\displaystyle (d)/(dx) [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)](https://img.qammunity.org/2022/formulas/mathematics/college/c6fshhoq1mws6w0d0la17c7k2dcytwd8kg.png)
Explanation:
Step 1: Define
![\displaystyle y = √(x)(8x - 5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5xyh1hutmt2fi2636mpt4w5valat940ygu.png)
Step 2: Differentiate
![\displaystyle f(x) = √(x), \ g(x) = (8x - 5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/42tisfmkncczv3eyc1sruxv5t7r2o6wn1o.png)
- Product Rule:
![\displaystyle y' = (d)/(dx)[√(x)] \cdot (8x - 5) + √(x) \cdot (d)/(dx)[(8x - 5)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/ecf532g2thm134fw2hyjoreqlgr5g7cxmx.png)
- Rewrite:
![\displaystyle y' = (d)/(dx)[x^{(1)/(2)}] \cdot (8x - 5) + √(x) \cdot (d)/(dx)[(8x - 5)]](https://img.qammunity.org/2022/formulas/mathematics/high-school/u0teczhe8cpqz03aomw7yyi54nskvan6xw.png)
- Basic Power Rule:
![\displaystyle y' = (1)/(2)x^{(1)/(2) - 1} \cdot (8x - 5) + √(x) \cdot 1 \cdot 8x^(1 - 1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ufq6v2jsktyyja2ztuyx9cjy72bg5u02cn.png)
- Simplify:
![\displaystyle y' = (1)/(2)x^{-(1)/(2)} \cdot (8x - 5) + √(x) \cdot 1 \cdot 8x^(0)](https://img.qammunity.org/2022/formulas/mathematics/high-school/l8b8vhghdxijq9wtb9ax8ki5h61t9fh0d0.png)
- Rewrite:
![\displaystyle y' = \frac{1}{2x^{(1)/(2)}} \cdot (8x - 5) + √(x) \cdot 1 \cdot 8](https://img.qammunity.org/2022/formulas/mathematics/high-school/55ruw107f4atrzj681h0dg66nuzop925hg.png)
- Multiply:
![\displaystyle y' = \frac{8x + 5}{2x^{(1)/(2)}} + 8√(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/wm21ns3wzz3skgaa30yx5bvlf8l545edfv.png)
- Rewrite:
![\displaystyle y' = (8x + 5)/(2√(x)) + 8√(x)](https://img.qammunity.org/2022/formulas/mathematics/high-school/k6nxoxuvqixisuv25n7nss9ctak6tel21f.png)
- Add/Rewrite:
![\displaystyle y' = (24x - 5)/(2√(x))](https://img.qammunity.org/2022/formulas/mathematics/high-school/eriifylvun01x61nql3ne7u9yukfppe2ln.png)