40.9k views
24 votes
Solve by quadratic equation​

Solve by quadratic equation​-example-1

2 Answers

4 votes

Answer:

I think this answer is right if no tell me please :)

Solve by quadratic equation​-example-1
User Elvenbyte
by
3.9k points
12 votes

Question :


  • \tt (x+2)/(x-2) + (x-2)/(x+2) = (5)/(6)

Answer :


  • \large \underline{\boxed{\bf{x = (\pm 2√(119))/(7)}}}

Explanation :


\tt : \implies (x+2)/(x-2) + (x-2)/(x+2) = (5)/(6)


\tt : \implies ((x+2)(x+2) + (x-2)(x-2))/((x-2)(x+2)) = (5)/(6)


\tt : \implies ((x+2)^(2) + (x-2)^(2))/((x-2)(x+2)) = (5)/(6)

Now, we know that :


  • \large \underline{\boxed{\bf{(a+b)^(2) = a^(2) + b^(2)+ 2ab}}}

  • \large \underline{\boxed{\bf{(a-b)^(2) = a^(2) + b^(2) - 2ab}}}

  • \large \underline{\boxed{\bf{(a+b)(a-b) = a^(2) - b^(2)}}}


\tt : \implies (x^(2)+2^(2)+ 2 * x * 2 + x^(2)+2^(2) - 2 * x * 2 )/(x^(2)-2^(2)) = (5)/(6)


\tt : \implies \frac{x^(2)+ 4 + \cancel{4x} + x^(2)+ 4 - \cancel{4x}}{x^(2)-4} = (5)/(6)


\tt : \implies (x^(2) + x^(2) + 4 + 4)/(x^(2)-4) = (5)/(6)


\tt : \implies (2x^(2) + 8)/(x^(2)-4) = (5)/(6)

By cross multiply :


\tt : \implies (2x^(2) + 8)6= 5(x^(2)-4)


\tt : \implies 12x^(2) + 48 = 5x^(2)-20


\tt : \implies 12x^(2) + 48 - 5x^(2) + 20 = 0


\tt : \implies 7x^(2) + 68 = 0


\tt : \implies 7x^(2) + 0x + 68 = 0

Now, by comparing with ax² + bx + c = 0, we have :

  • a = 7
  • b = 0
  • c = 68

By using quadratic formula :


\large \underline{\boxed{\bf{x = \frac{-b \pm \sqrt{b^(2) - 4ac}}{2a}}}}


\tt : \implies x = \frac{-(0) \pm \sqrt{(0)^(2) - 4(7)(68)}}{2(7)}


\tt : \implies x = (0 \pm √(0 - 1904))/(14)


\tt : \implies x = (\pm √(- 1904))/(14)


\tt : \implies x = (\pm √(2* 2* 2* 2* 7* 17))/(14)


\tt : \implies x = \frac{\pm \cancel{2} * 2√(7* 17)}{\cancel{14}}


\tt : \implies x = (\pm2√(119))/(7)


\large \underline{\boxed{\bf{x = (\pm 2√(119))/(7)}}}

Hence value of
\bf x =(\pm 2√(119))/(7)

User Odile
by
4.7k points