177k views
2 votes
EXpress Cos6X interm of CosX​

User Worldask
by
8.4k points

1 Answer

4 votes

Expressing
\( \cos(6x) \) in terms of
\( \cos(x) \) yields
\( 32\cos^6(x) - 48\cos^4(x) + 18\cos^2(x) - 1 \). This simplification utilizes multiple angle formulas for cosine and double-angle identities.


\[ \cos(6x) = 4(2\cos^2(x) - 1)^3 - 3(2\cos^2(x) - 1) \]

let's express
\( (2\cos^2(x) - 1) \) as \( \cos(2x) \) using the double-angle formula:
\( \cos(2x) = 2\cos^2(x) - 1 \)

Substituting
\( \cos(2x) \) into the equation for
\( \cos(6x) \):


\[ \cos(6x) = 4(\cos(2x))^3 - 3\cos(2x) \]

let's express
\( \cos(2x) \) again in terms of
\( \cos(x) \) :


\[ \cos(2x) = 2\cos^2(x) - 1 \]

Substitute this back into the equation for
\( \cos(6x) \):


\[ \cos(6x) = 4(2\cos^2(x) - 1)^3 - 3(2\cos^2(x) - 1) \]

Expanding the cube term
\( (2\cos^2(x) - 1)^3 \):


\[ \cos(6x) = 4(8\cos^6(x) - 12\cos^4(x) + 6\cos^2(x) - 1) - 6\cos^2(x) + 3 \]

Simplifying further:


\[ \cos(6x) = 32\cos^6(x) - 48\cos^4(x) + 24\cos^2(x) - 4 - 6\cos^2(x) + 3 \]

Combine like terms:


\[ \cos(6x) = 32\cos^6(x) - 48\cos^4(x) + 18\cos^2(x) - 1 \]

Hence,
\( \cos(6x) \) in terms of \( \cos(x) \) is \( 32\cos^6(x) - 48\cos^4(x) + 18\cos^2(x) - 1 \).

complete the question

Simplify the expression
\( \cos(6x) \) in terms of
\( \cos(x) \)

User Holland
by
8.2k points