76.1k views
0 votes
F


(x)=
x
4

x
2
⋅7⋅(3x+5)
6
−(3x+5)
7
⋅2x


User Abdul Hadi
by
7.7k points

1 Answer

4 votes

The expression
\(F'(x) = (x^4)/(x^2 \cdot 7 \cdot (3x + 5)^6 - (3x + 5)^7 \cdot 2x)\) when simplified would be
\[F'(x) = (x^3)/((3x + 5)^6 \cdot (x - 10)).\]

To solve the expression
\(F'(x) = (x^4)/(x^2 \cdot 7 \cdot (3x + 5)^6 - (3x + 5)^7 \cdot 2x)\), let's simplify the expression step by step.

First, factor out common terms:


\[F'(x) = (x^4)/((3x + 5)^6 \cdot (x^2 \cdot 7 - (3x + 5) \cdot 2x)).\]

Now, simplify the denominator:


\[F'(x) = (x^4)/((3x + 5)^6 \cdot (7x^2 - 6x^2 - 10x)).\]

Combine like terms:


\[F'(x) = (x^4)/((3x + 5)^6 \cdot (x^2 - 10x)).\]

Factor out \(x\) from the denominator:


\[F'(x) = (x^4)/(x \cdot (3x + 5)^6 \cdot x(x - 10)).\]

Simplify further:


\[F'(x) = (x^3)/((3x + 5)^6 \cdot (x - 10)).\]

This is the simplified form of the given expression F'(x).

The question probable may be:

Simplify the given expression :


\(F'(x) = (x^4)/(x^2 \cdot 7 \cdot (3x + 5)^6 - (3x + 5)^7 \cdot 2x)\)

User Bubu
by
7.7k points