The square root of 7 is less than 4, represented mathematically as sqrt(7) < 4 and the correct option is B.
The question does not provide any specific values for the two real numbers, so we cannot simply compare them directly. However, we can use our knowledge of real numbers to make some general statements.
First, we know that the square root of any positive real number is less than the original number. This is because squaring a number always results in a larger number. For example, the square root of 7 is less than 7 because 7^2 = 49.
Second, we know that any positive real number is greater than 0. This is because a number cannot be less than 0 and still be positive.
Therefore, we can conclude that the square root of 7 is less than 4. We can represent this mathematically as follows:
sqrt(7) < 4
This is the only mathematical symbol that we can use to compare the two real numbers without knowing their specific values.
Conclusion:
The mathematical symbol that would best fit in the blank to compare the two real numbers is <. This is because the square root of any positive real number is less than the original number, and any positive real number is greater than 0. Therefore, we can conclude that the square root of 7 is less than 4.
Therefore, the correct option is B.