T he appropriate null and alternate hypotheses is
and The value of the test statistic z is approximately 2.65.
Part 1: Hypotheses Setup
The null hypothesis
is that the proportion of U.S. adults favoring an internet sales tax is equal to or less than 42%
, while the alternate hypothesis
is that the proportion is greater than 42% (p > 0.42).
This is a right-tailed test.
![\[ H_0: p \leq 0.42 \]\\H_1: p > 0.42 \]](https://img.qammunity.org/2024/formulas/mathematics/college/eyq6aqdzttvishev6h049pojcppqfh1q0y.png)
Part 2: Compute Test Statistic
Using the formula for the z-test for proportions:
![\[ z = \frac{\hat{p} - p_0}{\sqrt{(p_0(1-p_0))/(n)}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/nl3xp7beughuwdenvcct1jmbsy9t1lj6gy.png)
Where:
-
is the sample proportion,
-
is the assumed population proportion,
- n = 1025 is the sample size.
Given that x = 472,
, and
, substitute these values into the formula:
![\[ z = \frac{0.46098 - 0.42}{\sqrt{(0.42(1-0.42))/(1025)}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/ajgkp65br9btj87id8zsat6d7wvrzmgu9q.png)
Let's calculate the test statistic \(z\):
![\[ z = \frac{0.46098 - 0.42}{\sqrt{(0.42 * (1 - 0.42))/(1025)}} \]\\z = \frac{0.04098}{\sqrt{(0.42 * 0.58)/(1025)}} \]\\z \approx \frac{0.04098}{\sqrt{(0.2436)/(1025)}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/ef4mhap0zy5bg5kcjvm18shix8jytfyx5i.png)
![\[ z \approx (0.04098)/(√(0.0002379024)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/rpwvx6b56nslk8qgm8opfea7uka5vh5o14.png)
![\[ z \approx (0.04098)/(0.01542) \]](https://img.qammunity.org/2024/formulas/mathematics/college/klxmth67740shrenlxqrqw2ue6wle3e5y2.png)
![\[ z \approx 2.6545 \]](https://img.qammunity.org/2024/formulas/mathematics/college/7t2wg49e710di009a7zg79fameb4tpope9.png)
Rounded to two decimal places, the test statistic z is approximately 2.65.