120k views
0 votes
Hello! Can anyone assist me with this exercise? It will be appreciated.​

Hello! Can anyone assist me with this exercise? It will be appreciated.​-example-1
User Lyxal
by
7.8k points

1 Answer

1 vote

Answer:

1) a) 4.28in b) 14.97in²

2) a) 39.09m b) 156.38m²

3) a) 25.92cm b) 142.55cm²

Explanation:

1. For the first scenario:


\sf \theta = 35^\circ,
\sf r = 7 \, \textsf{in}

Length of the arc:


\sf \textsf{Length of arc} = (\theta)/(360^\circ) * 2\pi r


\sf \textsf{Length of arc} = (35)/(360) * 2\pi * 7


\sf \textsf{Length of arc} \approx 4.276056667 \, \textsf{in}


\sf \textsf{Length of arc} \approx 4.28 \, \textsf{in} \textsf{(in 2 d.p.)}

Area of the arc:


\sf \textsf{Area of the arc} = (\theta)/(360^\circ) * \pi r^2


\sf \textsf{Area of the arc} = (35)/(360) * \pi * 7^2


\sf \textsf{Area of the arc} \approx 14.96619834 \, \textsf{in}^2


\sf \textsf{Area of the arc} \approx 14.97 \, \textsf{in}^2 \textsf{(in 2 d.p.)}

2. For the second scenario:


\sf \theta = 280^\circ,
\sf r = 8 \, \textsf{m}

Length of the arc:


\sf \textsf{Length of arc} = (\theta)/(360^\circ) * 2\pi r


\sf \textsf{Length of arc} = (280)/(360) * 2\pi * 8


\sf \textsf{Length of arc} \approx 39.09537524 \, \textsf{m}


\sf \textsf{Length of arc} \approx 39.09 \, \textsf{m} \textsf{(in 2 d.p.)}

Area of the arc:


\sf \textsf{Area of the arc} = (\theta)/(360^\circ) * \pi r^2


\sf \textsf{Area of the arc} = (280)/(360) * \pi * 8^2


\sf \textsf{Area of the arc} \approx 156.381501 \, \textsf{m}^2


\sf \textsf{Area of the arc} \approx 156.38 \, \textsf{m}^2 \textsf{(in 2 d.p.)}

3. For the third scenario:


\sf \theta = 135^\circ,
\sf r = 11 \, \textsf{cm}

Length of the arc:


\sf \textsf{Length of arc} = (\theta)/(360^\circ) * 2\pi r


\sf \textsf{Length of arc} = (135)/(360) * 2\pi * 11


\sf \textsf{Length of arc} \approx 25.91813939 \, \textsf{cm}


\sf \textsf{Length of arc} \approx 25.92 \, \textsf{cm} \textsf{(in 2 d.p.)}

Area of the arc:


\sf \textsf{Area of the arc} = (\theta)/(360^\circ) * \pi r^2


\sf \textsf{Area of the arc} = (135)/(360) * \pi * 11^2


\sf \textsf{Area of the arc} \approx 142.5497667 \, \textsf{cm}^2


\sf \textsf{Area of the arc} \approx 142.55 \, \textsf{cm}^2 \textsf{(in 2 d.p.)}

User Hauke Mallow
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories