The expression \((2a - 1)(8a - 5)\) simplifies to \(16a^2 - 18a + 5\) using the distributive property. This quadratic expression represents the result of multiplying the given binomials.
To simplify the expression \((2a - 1)(8a - 5)\), you can use the distributive property (FOIL method):
\[ (2a - 1)(8a - 5) = 2a \cdot 8a - 2a \cdot 5 - 1 \cdot 8a + 1 \cdot 5 \]
Now, perform the multiplications and combine like terms:
\[ 16a^2 - 10a - 8a + 5 \]
Combine like terms:
\[ 16a^2 - 18a + 5 \]
So, \((2a - 1)(8a - 5)\) simplifies to \(16a^2 - 18a + 5\).
The probable question may be:
Simplify: (2a-1) (8a-5)