The volume of the parallelepiped with adjacent edges PQ, PR, PS, where P(1, 0, 3), Q(-3, 1, 7), R(4, 2, 2), S(0, 6, 5), is 143 cubic units.
To find the volume
of a parallelepiped given three vectors
representing the adjacent edges, you can use the following formula:
![\[ V = |\mathbf{u} \cdot (\mathbf{v} * \mathbf{w})| \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4tlrb2vwrtdl1cbybdkrxob3edmap7x3o9.png)
Here,
denotes the cross product, and
denotes the dot product.
Let's denote the vectors
respectively.
![\[ \mathbf{u} = \mathbf{q} - \mathbf{p} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/owt57gl7nl8wltvfnlcrfqza4gamroy7e4.png)
![\[ \mathbf{v} = \mathbf{r} - \mathbf{p} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/d1xecc4en0spfl5vp4cn0mvo3h45wdk70p.png)
![\[ \mathbf{w} = \mathbf{s} - \mathbf{p} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ljm1nk7z8zew2ug4mn49q0uoqm4h9vpdft.png)
Let's calculate
first:
![\[ \mathbf{u} = \mathbf{q} - \mathbf{p} = \langle -3 - 1, 1 - 0, 7 - 3 \rangle = \langle -4, 1, 4 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9dl97grjbddk05n72a0r73seyod39sxoor.png)
![\[ \mathbf{v} = \mathbf{r} - \mathbf{p} = \langle 4 - 1, 2 - 0, 2 - 3 \rangle = \langle 3, 2, -1 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/purccl7a5omdq0wiinqjln2q28gjchzwgv.png)
![\[ \mathbf{w} = \mathbf{s} - \mathbf{p} = \langle 0 - 1, 6 - 0, 5 - 3 \rangle = \langle -1, 6, 2 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/h2qbkngqb484oo4v44eqpb8jdjid6k6z2n.png)
Now, compute
(the cross product):
![\[ \mathbf{v} * \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & -1 \\ -1 & 6 & 2 \end{vmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5e9g3ql5iq8br3jkwred7kr1kmbdkzzdyr.png)
![\[ \mathbf{v} * \mathbf{w} = \langle -14, -7, 20 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ee9y2p33k5xleel91nf01bchy97p2omkku.png)
Finally, calculate
(the dot product):
![\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = \langle -4, 1, 4 \rangle \cdot \langle -14, -7, 20 \rangle \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/bmqmeh663mrl5uey6jdewlol8judh0quij.png)
![\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = (-4)(-14) + (1)(-7) + (4)(20) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/gq1cn08bhkl84k308fqfups571442svbd0.png)
![\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = 56 + 7 + 80 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/yyuw70hu0aukse0qymu4p6wac9exyilmmo.png)
![\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = 143 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/me8mx84q3r75ls3ghkc5xs51tbecqr397j.png)
The volume \( V \) is the absolute value of this result:
![\[ V = |143| = 143 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7s2de3yy89ukeou9mr72po5u3tx9eux0pa.png)
So, the volume of the parallelepiped is 143 cubic units.