167k views
2 votes
find the volume of the parallelepiped with adjacent edges pq, pr, ps. p(1, 0, 3), q(−3, 1, 7), r(4, 2, 2), s(0, 6, 5)

User Ihsany
by
7.6k points

1 Answer

7 votes

The volume of the parallelepiped with adjacent edges PQ, PR, PS, where P(1, 0, 3), Q(-3, 1, 7), R(4, 2, 2), S(0, 6, 5), is 143 cubic units.

To find the volume
\( V \) of a parallelepiped given three vectors
\( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \)representing the adjacent edges, you can use the following formula:


\[ V = |\mathbf{u} \cdot (\mathbf{v} * \mathbf{w})| \]

Here,
\( * \) denotes the cross product, and
\( \cdot \) denotes the dot product.

Let's denote the vectors
\( \mathbf{pq} \), \( \mathbf{pr} \), and \( \mathbf{ps} \) as \( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \)respectively.


\[ \mathbf{u} = \mathbf{q} - \mathbf{p} \]


\[ \mathbf{v} = \mathbf{r} - \mathbf{p} \]


\[ \mathbf{w} = \mathbf{s} - \mathbf{p} \]

Let's calculate
\( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \) first:


\[ \mathbf{u} = \mathbf{q} - \mathbf{p} = \langle -3 - 1, 1 - 0, 7 - 3 \rangle = \langle -4, 1, 4 \rangle \]


\[ \mathbf{v} = \mathbf{r} - \mathbf{p} = \langle 4 - 1, 2 - 0, 2 - 3 \rangle = \langle 3, 2, -1 \rangle \]


\[ \mathbf{w} = \mathbf{s} - \mathbf{p} = \langle 0 - 1, 6 - 0, 5 - 3 \rangle = \langle -1, 6, 2 \rangle \]

Now, compute
\( \mathbf{v} * \mathbf{w} \) (the cross product):


\[ \mathbf{v} * \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & -1 \\ -1 & 6 & 2 \end{vmatrix} \]


\[ \mathbf{v} * \mathbf{w} = \langle -14, -7, 20 \rangle \]

Finally, calculate
\( \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) \) (the dot product):


\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = \langle -4, 1, 4 \rangle \cdot \langle -14, -7, 20 \rangle \]


\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = (-4)(-14) + (1)(-7) + (4)(20) \]


\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = 56 + 7 + 80 \]


\[ \mathbf{u} \cdot (\mathbf{v} * \mathbf{w}) = 143 \]

The volume \( V \) is the absolute value of this result:


\[ V = |143| = 143 \]

So, the volume of the parallelepiped is 143 cubic units.

User Ranjeeta
by
7.6k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories