78.3k views
2 votes
Find the vector product pq of the two vectors shown beow

User Bill Noble
by
7.1k points

1 Answer

3 votes

The vector product of the two vectors is (-3, -6, 11).

To find the vector product of
$\mathbf{p}$ and
$\mathbf{q}$, we can use the following formula:


$\mathbf{p} * \mathbf{q} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \\ p_x & p_y & p_z \\ \\ q_x & q_y & q_z \end{vmatrix}$

where
$\hat{\imath}$,
$\hat{\jmath}$, and
$\hat{k}$ are the unit vectors in the x, y, and z directions, respectively.

Substituting the components of
$\mathbf{p}$ and
$\mathbf{q}$ into the formula, we get:


$\mathbf{p} * \mathbf{q} = \begin{vmatrix} \hat{\imath} & \hat{\jmath} & \hat{k} \\ \\ 1 & 2 & 3 \\ \\ 4 & 5 & 6 \end{vmatrix}$

Expanding the determinant, we get:


$\mathbf{p} * \mathbf{q} = -3 \hat{\imath} - 6 \hat{\jmath} + 11 \hat{k}$

Therefore, the vector product of
$\mathbf{p}$ and
$\mathbf{q}$ is (-3, -6, 11).

Question:

Find the vector product of the two vectors
$\bold{p}$ and
$\bold{q}$ shown below.

Vectors:


$\bold{p} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$


$\bold{q} = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$

User CyberMJ
by
7.7k points