56.9k views
5 votes
Bro pls help
∫(1/((x+1)√(x^(2)+2x+2))

1 Answer

6 votes

The correct answer to the integral ∫(1/((x+1)√(x^(2)+2x+2))) is In (|√(x^2 + 2x +2 - 1)|) - In (√(x^2 + 2x + 2)+1)/2 + C.

Partial Fractions: We can first decompose the integrand using partial fractions. This involves finding constants A and B such that:

1/((x+1)√(x^2+2x+2)) = A/(x+1) + B/√(x^2+2x+2)

Multiplying both sides by the denominator, we get:

1 = A√(x^2+2x+2) + B(x+1)

Substituting x=-1, we get A=1.

Substituting √(x^2+2x+2)=0, we get B=-1.

Therefore, the integrand can be rewritten as:

1/((x+1)√(x^2+2x+2)) = 1/(x+1) - √(x^2+2x+2)

Integration: Now, the integral can be easily solved using the following substitutions:

x+1 = t (dx=dt)

√(x^2+2x+2) = p (2x+2=dp/dx)

∫(1/((x+1)√(x^2+2x+2))) dx = ∫(1/t - p) dt

= In|t| - ∫p dt

= In|x+1| - ∫p dt

Integration of p: Integrating p requires a trigonometric substitution. Let:

x+1 = tanθ

dx = sec^2(θ) dθ

√(x^2+2x+2) = secθ

Substituting, we get:

∫p dt = ∫secθ dθ = In|secθ+tanθ| + C

Combining results: Substituting back the original variables, we obtain the final solution:

∫(1/((x+1)√(x^2+2x+2))) dx = In|x+1| - In|secθ+tanθ| + C

= In|x+1| - In|√(x^2+2x+2)+1| + C

= In|√(x^2+2x+2)-1| - In|√(x^2+2x+2)+1|/2 + C

User Emmeowzing
by
7.9k points