121k views
7 votes
Let , −6 5 be a point on the terminal side of θ. Find the exact values of sinθ, secθ, and tanθ. Sinθ = secθ = tanθ

User Fadi Hania
by
5.8k points

1 Answer

0 votes

Answer:

Explanation:

From the information given:


r^2 = x^2 +y^2


r^2 = (-6)^2 + (5)^2


r^2 = 36 +25


r^2 =61


r = √(61)


Sin \theta = (y)/(r) = (5)/(√(61))


Cos \theta = (x)/(r) = (- 6 )/(√(61))


Sec \theta = (1)/(cos \theta) = (√(61))/(5)


tan \theta = (Sin \theta )/(Cos \theta)


tan \theta = \frac{(5)/(√(61)) }{\frac{{-6} }{√(61)} }


tan \theta = {(5)/(√(61)) }* (√(61) )/(-6)


tan \theta = {(5)/(-6) }

User Herman Kan
by
6.1k points