101k views
3 votes
Question is attached

Question is attached-example-1
User Picachieu
by
8.2k points

1 Answer

5 votes

a. Reaction functions:

Q₁ = 1/4 * (200 - 3Q₂)

Q₂ = 1/4 * (200 - 3Q₁) + 28

b. Equilibrium Output:

Q₁ = 22

Q₂ = 32

c. Equilibrium Market Price:

P = 58

d. Profits in Equilibrium:

Π₁ = 396

Π₂ = 384

a. Reaction Functions:

Firm 1's profit maximization:

Profit (Π₁) = (200 - 3(Q₁ + Q₂))Q₁ - 26Q₁

Setting the derivative with respect to Q₁ to zero, we find the reaction function for firm 1:

Q₁ = 1/4 * (200 - 3Q₂)

Firm 2's profit maximization:

Profit (Π₂) = (200 - 3(Q₁ + Q₂))Q₂ - 32Q₂

Setting the derivative with respect to Q₂ to zero, we find the reaction function for firm 2:

Q₂ = 1/4 * (200 - 3Q₁) + 28

b. Equilibrium Output:

Setting the reaction functions equal to each other:

1/4 * (200 - 3Q₂) = Q₂

Solving for Q₂, we get Q₂ = 32.

Substituting Q₂ into the reaction function for firm 1:

Q₁ = 1/4 * (200 - 3 * 32)

Solving for Q₁, we get Q₁ = 22.

c. Equilibrium Market Price:

Substitute Q₁ and Q₂ into the inverse market demand function:

P = 200 - 3(Q₁ + Q₂)

P = 200 - 3(22 + 32)

P = 58

d. Profit in Equilibrium:

Substitute Q₁ and Q₂ into the profit functions for each firm:

Π₁ = (200 - 3(22 + 32)) * 22 - 26 * 22

Π₁ = 396

Π₂ = (200 - 3(22 + 32)) * 32 - 32 * 32

Π₂ = 384

User Mecaveli
by
8.0k points