The value is -5A + 4B is
![\[ \begin{bmatrix} -50 & -9 \\ 8 & -2 \\ -11 & 67 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/sprnhte1wgvuv9wtnfj3qi2742v905ao8p.png)
To find the matrix expression for \(-5A + 4B\), you first need to perform scalar multiplication for each matrix and then subtract them. Given matrices:
![\[ A = \begin{bmatrix} 6 & 1 \\ -4 & -6 \\ 7 & -7 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/7bebj6r9f4p1gxp15ix3ereokhjgc7sg0f.png)
![\[ B = \begin{bmatrix} -5 & -1 \\ -3 & -8 \\ 6 & 8 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/vlehbqr80miblsptxsds1cfcm2x2zfhw8g.png)
Perform the scalar multiplication:
![\[ -5A = \begin{bmatrix} -30 & -5 \\ 20 & 30 \\ -35 & 35 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/tl02uovrk5q77vd9nrdqm4w562pfo0unrf.png)
![\[ 4B = \begin{bmatrix} -20 & -4 \\ -12 & -32 \\ 24 & 32 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/awk4gqsazvsb3xvkv087egpw9j1ni27c2w.png)
Now, subtract the results:
![\[ -5A + 4B = \begin{bmatrix} -30 & -5 \\ 20 & 30 \\ -35 & 35 \end{bmatrix} + \begin{bmatrix} -20 & -4 \\ -12 & -32 \\ 24 & 32 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/k0q0vrnr5d4ivkx4y6xas7d2yv4g544cf2.png)
![\[ -5A + 4B = \begin{bmatrix} -50 & -9 \\ 8 & -2 \\ -11 & 67 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/2n4ai33xnjies9lryg9edkcdostt1dehio.png)
So,
in matrix form is:
![\[ \begin{bmatrix} -50 & -9 \\ 8 & -2 \\ -11 & 67 \end{bmatrix} \]](https://img.qammunity.org/2024/formulas/mathematics/college/sprnhte1wgvuv9wtnfj3qi2742v905ao8p.png)
Complete question:
Find -5A + 4B
A=[6, 1, -4, -6, 7, -7] B=[-5, -1, -3, -8, 6, 8]
a. [-10, 9, 8, -2, 16, 67]
b. -10, 9, 8, -2, -59, -68]
c. [-50, -9, -1, 16, -11, -68]
d. [-50, -9, 8, -2, -11, 67]