4.1k views
0 votes
Find the area of the region outside r=5+5sintheta, but inside r=15sintheta

1 Answer

4 votes

The area of the region outside r=5+5sinθ, but inside r=15sinθ is 78.55 unit².

How the area of the region is calculated.

Given

Outside radius = 5 + 5 sinθ θ

Inside radius = 15sinθ

Point where the radii intersect is

r₁ = r₂

5 + 5sinθ = 15sinθ

5 = 15sinθ - 5sinθ

5 = 10sinθ

sinθ = 5/10

sinθ = 1/2

θ = sin⁻¹(0.5)

θ = 30⁰, 150⁰ (Sine is positive in first and second quadrant)

r₂ = 15sinθ and r₁ = 5 + 5sinθ

Area of region = 1/2∫[a,b](r₂²- r₁²)dθ

where

a = 30⁰ and b = 150⁰

A = 1/2∫₃₀¹⁵⁰[(15sinθ)² - (5 + 5sinθ)²]dθ

= 1/2∫₃₀¹⁵⁰[225sin²θ - (25 + 50sinθ + 25sin²θ)]dθ

=1/2∫₃₀¹⁵⁰[200sin²θ - 50sinθ -25)]dθ

Sin²θ = 1 - cos2θ/2

A = 1/2∫₃₀¹⁵⁰[100(1 - cos2θ) - 50sinθ -25)]dθ

= 1/2∫₃₀¹⁵⁰[100 - 100cos2θ - 50sinθ -25)]dθ

Integrate

= 1/2[100θ - 50sinθ - 25θ + 50cosθ]₃₀¹⁵⁰

= 1/2[75θ - 50sinθ + 50cosθ]₃₀¹⁵⁰

Substitute the limits

= 1/2{[75(150) - 50sin(150) + 50cos(150)] - [75(30) - 50sin(30) + 50cos(30)]}

= 1/2{[75(0.5) - 50(0.5) + 50(-0.866)] - [75(0.5) - 50(0.5) + 50(-0.866)]}

=78.55 unit²

The area of the region outside r=5+5sinθ, but inside r=15sinθ is 78.55 unit².

User Miles Henrichs
by
8.1k points