Final answer:
To find ∂z/∂s and ∂z/∂t, we use the chain rule. ∂z/∂s = 18t²(s²t - st²)⁸(2s³ - t³) and ∂z/∂t = 18s³(s²t - st²)⁸(s² - 2t²).
Step-by-step explanation:
To find ∂z/∂s and ∂z/∂t, we will use the chain rule. Let's start by finding ∂z/∂s:
- Using the given information, we have x = s²t and y = st².
- Substituting these values into z = (x - y)⁹, we get z = (s²t - st²)⁹.
- Taking the partial derivative of z with respect to s, we apply the chain rule:
- ∂z/∂s = ∂z/∂x * ∂x/∂s + ∂z/∂y * ∂y/∂s.
- ∂z/∂x = 9(s²t - st²)⁸ * 2st = 18s²t(s²t - st²)⁸.
- ∂x/∂s = 2st.
- ∂z/∂y = 9(s²t - st²)⁸ * (-2t²) = -18t²(s²t - st²)⁸.
- ∂y/∂s = t².
- Substituting these values into ∂z/∂s = ∂z/∂x * ∂x/∂s + ∂z/∂y * ∂y/∂s, we get ∂z/∂s = 18s²t(s²t - st²)⁸ * 2st - 18t²(s²t - st²)⁸ * t².
- Simplifying further, ∂z/∂s = 36s³t²(s²t - st²)⁸ - 18t³(s²t - st²)⁸ = 18t²(s²t - st²)⁸(2s³ - t³).
Now let's find ∂z/∂t:
- Using the given information, we have x = s²t and y = st².
- Substituting these values into z = (x - y)⁹, we get z = (s²t - st²)⁹.
- Taking the partial derivative of z with respect to t, we apply the chain rule:
- ∂z/∂t = ∂z/∂x * ∂x/∂t + ∂z/∂y * ∂y/∂t.
- ∂z/∂x = 9(s²t - st²)⁸ * 2s = 18s(s²t - st²)⁸.
- ∂x/∂t = s².
- ∂z/∂y = 9(s²t - st²)⁸ * (-2st) = -18s²t(s²t - st²)⁸.
- ∂y/∂t = 2st.
- Substituting these values into ∂z/∂t = ∂z/∂x * ∂x/∂t + ∂z/∂y * ∂y/∂t, we get ∂z/∂t = 18s(s²t - st²)⁸ * s² - 18s²t(s²t - st²)⁸ * 2st.
- Simplifying further, ∂z/∂t = 18s³(s²t - st²)⁸(s² - 2t²).